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I. INTRODUCTION

Characteristic features observed in the temporal develop-
ment of slope movement activity were proposed for evalua-
tion of rock slope stability in 1968 by Bjerrum and Jorstadt
in order to overcome the shortcomings of static models[1].
Since then this observational method has been successfully
applied for short-term prediction of rock slope collapses with
prediction horizons ranging from days to weeks(see[2] and
references therein). Zvelebil and Moser have recently dem-
onstrated a successful prediction of a sandstone rock wall
collapse two months beforehand[2]. Moreover, they also
show examples where the slope dynamics seems to bear pre-
dictive information about a possible collapse one or more
years in advance. This long-term prediction, however, was
based on rather subjective evaluation by experienced experts
of qualitative features observed in long-term monitoring of
slope movements. If such long-term predictive information
exists in the slope movements records, it would be desirable
to find an objective, quantitative method for its extraction
and evaluation. Zvelebil observed complex hierarchical pat-
terns in long-term slope movement records and proposed to
analyze them using modern methods developed in the theory
of nonlinear dynamics and deterministic chaos[3–5]. Qin et
al. recently described landslide evolution using a nonlinear
dynamical model exhibiting chaotic behavior[6]. Lyapunov
exponents, predictable time scales, and stability criteria were
evaluated using this model, which was estimated from the
observed landslide data[6].

In this paper, rock slope dynamics, registered as time se-
ries of dilatometric measurement of relative displacements
on rock cracks, are analyzed. A series of nonlinearity tests is
performed using raw and preprocessed data registered at
stable and unstable sandstone slopes. Relations between
slope movements and dynamics of meteorological variables
are also tested. Atmospheric variability and seasonality ex-
plain a large portion of slope movement variance. The re-
sponse to the atmospheric driving as well as the inherent
dynamics of rock slopes lack any significant nonlinearity, so

any hypothesis of the presence of chaotic dynamics would be
unfounded. The inherent slope dynamics, however, are far
from being trivial noninformative noise. The residuals ob-
tained from the slope movement series by removing meteo-
rological influences are fat-tailed non-Gaussian fluctuations,
with short-range correlations in the case of stable slopes. The
fluctuations of unstable slopes exhibit self-affine dynamics of
fractional Brownian motions with power-law long-range cor-
relations and are characterized by an asymptotic power-law
probability distribution with a decay coefficient outside the
range of stable Lévy distributions.

The analyzed data are described in Sec. II. Section III
describes the preprocessing of the data, separation of the
atmospheric variability reflected in the slope dynamics, and
the nonlinearity tests used for testing the hypothesized non-
linearity in the slope movement dynamics and their relations
to dynamics of meteorological variables. Distribution and
correlation properties of the residuals after removal of atmo-
spheric influences are analyzed in Sec. IV by using standard
methods such as estimation of histograms and periodograms,
as well as by using the detrended fluctuation analysis[7].
The results are discussed and conclusion given in Sec. V.

II. DATA

Displacements of rock masses—mainly crack openings—
were measured by rod dilatometers on kinematically and
functionally defined key sites of unstable and potentially un-
stable rock objects and parts of sandstone rock walls with
heights ranging from 40 to 100 m. The sites form a safety
monitoring net above the main road to the Czech Republic–
Germany border crossing point Hřensko-Schmilka near the
city of Děčín. The total length of the net is over 12 km, and
with more than 400 measuring sites it covers 100 rock ob-
jects [3–5]. Irregularly registered measurements form time
series with sampling times ranging from a few days to ap-
proximately two weeks. The available time series span the
period from January 1984(or November 1995) to June 2000,
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thus producing series of lengths from 480 to 612 samples. An
engineering geology expert divided the available, large col-
lection of time series into two groups. “Stable series” were
obtained from slopes where no patterns signaling danger of a
rapid slope collapse have been identified, despite some of the
monitored slopes exhibiting irreversible, long-lasting move-
ments. The “unstable series” were recorded on slopes which
recently either collapsed or were blasted down after being
assessed as approaching a collapse stage. After careful sort-
ing of the data, the majority of recordings were excluded due
to incompleteness(large gaps in recordings) and the remain-
ing four unstable and five stable series were analyzed. The
examples of the raw data are presented in Fig. 1[Figs.
1(a)–1(c), stable; Figs. 1(d) and 1(e), unstable series]. Since
most time series analysis methods require a regular sam-
pling, the series were resampled by a linear interpolation
using a procedure in a time series software package[8]. The
1024 samples obtained were used in further analyses. In par-
allel, a nonlinearity test for unevenly sampled data[9] was
also applied to the raw data.

Some of the time series[both stable, Figs. 1(c), and un-
stable, Fig. 1(d)] contain a long-term linear trend. Such a
clear nonstationarity could influence analyses and therefore
the series were linearly detrended[8]. The linearly detrended
time series[Figs. 2(a) and 2(b)] can still contain slow non-
linear trends. It is not cleara priori, however, whether such
nonlinear trends are a part of the dynamics of interest, or
should also be removed. Therefore two versions of detrended
time series were used in subsequent analysis: linearly de-
trended, such as the examples in Figs. 2(a) and 2(b); and
high-pass filtered series in which frequencies over 1.3
cycle/yr were removed. Spectral as well as time-domain fil-
ters [8] were tested and similar results were obtained.

The dynamics of the series are dominated by an annual
cycle probably caused by atmospheric influences, mainly by

the temperature[3]. Thus the atmospheric variables should
be considered in the analyses. Since time series of meteoro-
logical data[atmospheric temperature, Fig. 2(c), humidity,
Fig. 2(d), and precipitation, Fig. 2(e)] were not measured
simultaneously on the same sites as the dilatometric data,
they were obtained by concatenating records from the two
nearest meteorological stations in the region, Děčín and Ústí
nad Labem. Thus we have obtained complete daily data
spanning the studied period. For each dilatometric record,
time series of the meteorological data with the same sam-
pling were constructed and resampled in the same way as the
dilatometric data. We realize that the meteorological data,
especially the amounts of precipitation, are characterized by
a high spatial variability, so we should use these data cau-
tiously.

III. TESTING FOR NONLINEARITY

The test for nonlinearity in univariate[10] and multivari-
ate data[11] operates with information-theoretic tools[12]
such as the well-known mutual informationIsX;Yd of two
random variablesX and Y, given asIsX;Yd=HsXd+HsYd
−HsX,Yd, where the entropiesHsXd, HsYd, andHsX,Yd are
given in the usual Shannonian sense[12]. Now, let the vari-
ablesX andY have zero means, unit variances, and correla-
tion matrixC. Then, we define a linear version of the mutual
information asLsX;Yd=−s1/2dslogs1+ logs2d, wheresi are
the eigenvalues of the correlation matrixC.

If the variablesX,Y have a two-dimensional Gaussian
distribution, then LsX;Yd and IsX;Yd are theoretically
equivalent. The general mutual informationI detects all de-
pendences in the data under study, while the linearL is sen-

FIG. 1. Time series of dilatometric measurements of relative
displacements on rock cracks on stable(a)-(c) and unstable(d), (e)
sandstone slopes.

FIG. 2. Linearly detrended time series of dilatometric measure-
ments of relative displacements on rock cracks on stable(a) and
unstable(b) sandstone slopes. Time series of atmospheric tempera-
ture (c), humidity (d), and precipitation(e) in the region.
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sitive only to linear structures(see [10] and references
therein). The test used is based on the so-called surrogate-
data[13] approach, in which one computes anonlinearsta-
tistic (here I) from the data under study and from an en-
semble of realizations of a linear stochastic process, which
mimics the “linear properties” of the studied data. If the
computed statistic for the original data is significantly differ-
ent from the values obtained for the surrogate set, one can
infer that the data were not generated by a linear process. For
the purpose of such tests the surrogate data must preserve the
spectrum and consequently, the autocorrelation function of
the series under study[13]. (Also, preservation of the histo-
gram is usually required. A histogram transformation used
for this purpose is described in[10] and references therein.)
In the multivariate case cross correlations between all pairs
of variables must also be preserved[14].

As in [10] we define the test statistic as the difference
between the mutual informationIsX;Yd obtained for the
original data and the meanIsX;Yd of a set of surrogates, in
the number of standard deviations(SD’s) of the latter. The
result is considered significant if the difference is clearly
larger than two SD’s. In this study we applied the univariate
versionI(Xstd ;Xst+td) when dynamical properties and non-
linearity of individual series(variables) were studied, and the
bivariate versionI(Xstd ;Yst+td) when dynamical relations
between two variables were investigated. The mutual infor-
mation IsX;Yd[o] from the scrutinized data and the mean
mutual informationIsX;Yd[s] from the surrogates, as well as
the test statistics, defined above, were plotted as functions of
the lag t. Significant differences found betweenIsX;Yd[o]
and IsX;Yd[s] were used to infer nonlinearity in the dynam-
ics of a variable(in the univariate case), or in a relation
between two variables(in the bivariate case). The same tests
as those using the(nonlinear) mutual informationIsX;Yd
were done with its linear versionLsX;Yd. Since the latter
measures only linear relations in the data, any significance
obtained usingLsX;Yd indicates imperfect surrogate data. In
such cases the significant results obtained usingIsX;Yd
should be assessed carefully, since they can reflect just a flaw
in the surrogates, and the tested data could be linear.

A typical result of the above described testing approach
can be seen in Fig. 3, where the relation between the atmo-
spheric temperature and the detrended unstable dilatometric
time series is studied. The mutual informationI(Xstd ;Yst
+td) detects a strong periodically changing dependence
which seems to be stronger in the data than it is in the linear
surrogates[Fig. 3(b)]. This deviation is reflected in statisti-
cally significant differences reaching over four SD’s[Fig.
3(d)]. A conclusion that the data are nonlinear is prevented
by the results from the linear statistic based on the linear
redundancyL(Xstd ;Yst+td). It also discovers significant dif-
ferences between the data and the surrogates, i.e., the surro-
gates do not exactly preserve the linear properties of the data.

Similar results have also been obtained in tests for non-
linearity in relations between the other meteorological vari-
ables and the dilatometric data and in testing the dilatometric
data themselves.

The fact that surrogates of strongly cyclic data can be
flawed has been observed and described(see, e.g.,[10] and

references therein). One can use more sophisticated(and
computationally costly) methods for construction of better
surrogate data[15], or try to remove the cyclic component
from the studied data. Since an atmospheric source of this
annual cyclicity in the studied data can be expected, in the
following we fit a multivariate linear regression[8] using the
meteorological data as independent variables and the dilato-
metric series as the dependent variable. The maxima of mu-
tual information between the atmospheric variables and the
dilatometric series are located at zero lag, so series without
lagging are used in this first series of regressions. The regres-
sion residuals are used in further analyses. The results of
nonlinearity tests of the residuals are similar to those in Fig.
3, but the dependence is weaker, i.e., the annual cycle was
removed only partially. The relation between the residuals
and the atmospheric temperature can be seen in Fig. 4. Prac-
tically, all the above conclusions hold, only the maximum of
I(Xstd ;Yst+td) is now in the lag 17 samples. Therefore an-
other linear regression, now with a lagged temperature series,
was performed twice—first with the lag 17 samples and then
with the lag 21 samples. Residuals of all dilatometric series
regressed on meteorological variables were twice more re-
gressed on lagged temperature series with lags determined
from such analyses as presented in Fig. 4. These triple re-
gressions finally removed the annual cycle, and in a majority
of the stable dilatometric series also any formal nonlinearity
(significance in the nonlinearity tests). The results of nonlin-
earity analysis of the residuals from the triple regression for
one of the unstable dilatometric series are presented in Fig.

FIG. 3. Testing for nonlinearity in the relationship between at-
mospheric temperature and the detrended unstable dilatometric time
series using mutual informationIsXstd ;Yst+tdd (b), (d) and the
check of the surrogate data using linear mutual information
LsXstd ;Yst+tdd (a), (c). The values of mutual information(a,b)
from the tested data(solid line), mean(dash-dotted line), and mean
±SD (dashed lines) of a set of 30 realizations of the surrogate data.
The statistics, differences in number of standard deviations of the
surrogates(c), (d).
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5. The annual cycle is removed and there is a weak but
long-term dependence apparent between the presentfXstdg
and the futurefXst+tdg values of the studied series. Again,
both linear and nonlinear statistics show significant differ-

ences from the surrogate data. It is time to consider a more
sophisticated construction of surrogate data than just the
simple phase randomization and fast Fourier transform as
above. In order to avoid possible problems due to resampling
we returned to the raw data and applied the method of
Schreiber and Schmitz[9]. In this approach, surrogate data
of unevenly sampled series are constructed using the Lomb
periodogram and a combinatorial optimization for its inver-
sion. No significant results, i.e., no evidence for nonlinearity,
were found in the studied data.

Summing up the above results, we can see that the dy-
namics of the dilatometric measurements of relative dis-
placements on rock cracks is strongly modulated by the me-
teorological variables. Their influence, namely, that of the
atmospheric temperature, is reflected in a complex but linear
way. The inherent dynamics of the rock slopes, reflected in
the residuals of the triple regressions is probably linear, but,
especially in the cases of unstable slopes, cannot be ex-
plained by a(transformed) linear Gaussian process, used as
the null hypothesis in the above nonlinearity tests. In the next
section we will analyze properties of these residuals.

IV. DISTRIBUTIONS AND TEMPORAL CORRELATIONS

In order to study distributions of the residuals(obtained
by the above-described multiple linear regressions) we first
bin the data into 64 bins and construct their histograms.
Then, by summing the bins from the tail to the mean value,
we obtain the empirical probabilityPsuxu.Xd of observing
amplitudes larger than a given valueX (wherex is a devia-
tion from the mean value). The examples ofPsuxu.Xd for a
stable and unstable dilatometric series are presented in Figs.
6(a) and 6(b), respectively. The distributions are asymmetric,
with a small digression from the Gaussian distribution in the

FIG. 4. Testing for nonlinearity in the relationship between at-
mospheric temperature and the residuals of the multilinear regres-
sion of the detrended unstable dilatometric time series on the me-
teorological variables, using mutual informationI(Xstd ;Yst+td)
(b),(d) and the check of the surrogate data using linear mutual in-
formationL(Xstd ;Yst+td) (a),(c). See caption of Fig. 3 for the line
key.

FIG. 5. Testing for nonlinearity in the residuals of the triple
linear regression of the detrended unstable dilatometric time series
on the meteorological variables, using mutual information
I(Xstd ;Xst+td) (b),(d) and the check of the surrogate data using
linear mutual informationL(Xstd ;Xst+td) (a),(c). See caption of
Fig. 3 for the line key.

FIG. 6. The empirical probabilityPsuxu .Xd of observing am-
plitudes larger than a given valueX (wherex is a deviation from the
mean value) for the triple regression residuals of an example of a
stable(a) and unstable(b) time series of dilatometric measurements.
Diamonds and squares illustrate left and right sides of the distribu-
tion. The solid line shows the average distribution of 105 realiza-
tions of a 1024-sample time series randomly drawn from the Gauss-
ian distribution with the same mean and variance as the residuals
under study.
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stable case[Fig. 6(a)]. For the unstable series[Fig. 6(b)] one
tail is much “fatter” than the Gaussian distribution, i.e., large
fluctuations are more likely to occur than the Gaussian dis-
tribution would predict. Moreover, this tail is consistent with
a power lawPsuxu.Xd<X−m showing the increasing reduc-
tion of probability for increasing amplitude of the fluctua-
tions. The robust linear regression[16] fit yields an estimate
m=4.8, which is well outside the range for stable Lévy dis-
tributions s0,m,2d [17].

In order to study the dynamics and temporal correlations
of the residuals we calculate their power spectra[8]. The
examples for stable[Figs. 7(a) and 7(b)] and unstable[Figs.
7(c) and 7(d)] dilatometric data are plotted in single[loga-
rithm of power against frequency, Figs. 7(a) and 7(c)] and
double[logarithm of power against logarithm of frequency,
Figs. 7(b) and 7(d)] logarithmic plots. The power spectrum
of the stable series[Figs. 7(a) and 7(b)] decays in a linear
fashion in the case of the single logarithmic plot[Fig. 7(a)],
i.e., the spectral powerSsfd as a function of the frequencyf
is best described by an exponentially decreasing curveSsfd
<exps−gfd. Such a power spectrum is typical for series with
short-range correlations, i.e., the correlation function expo-
nentially decreases with increasing time lag. The behavior of
the spectrum of the unstable series is different—now an ap-
proximately linear decrease can be seen in the double loga-
rithmic plot [Fig. 7(d)]. This spectrum is best approximated
by a power-law decaySsfd< f−b. The robust linear regres-
sion fit over the whole spectrum yields an estimateb
=1.5±0.6. Such a power spectrum is a characteristic of frac-
tal Brownian motion with long-term power-law correlations.

In addition to scaling of the distribution of fluctuations
and of the distribution of energy over the power spectrum,
we also study a possible scaling of fluctuations in their tem-
poral evolution using so-called detrended fluctuation analysis
(DFA) [7].

Briefly, for performing the DFA, the time serieshxsid ,
i =1, . . . ,Nj is centered by subtracting its mean valuex̄ and
integrated. The integrated time seriesyskd=oi=1

k fxsid− x̄g is
divided into boxes of equal lengthL. In each box of lengthL,
a least squares line is fitted to the data(representing the trend
in that box). They coordinate of the straight line segments is
denoted byyLskd. Next, we detrend the integrated time series
yskd by subtracting the local trendyLskd in each box. The
root-mean-square fluctuation of this integrated and detrended
time series is calculated using

FsLd =Î 1

N
o
k=1

N

fyskd − yLskdg2. s1d

This computation is repeated over all time scales(box sizes
L) to characterize the average fluctuationFsLd as a function
of box sizeL. Typically, FsLd will increase with box sizeL.
A linear relationship on a double logarithmic plot indicates
the presence of power-law(fractal) scaling. Under such con-
ditions, the fluctuations can be characterized by a scaling
exponenta, the slope of the line relating log10FsLd to log10L.

The DFA results obtained for the residuals of the linearly
detrended unstable dilatometric series, obtained from the
single multivariate linear regression on the meteorological
variables, are presented in Fig. 8(c). [The related power spec-
trum was illustrated in Fig. 7(d)]. The long range of the
linearly increasing dependence in the double logarithmic plot
[Fig. 8(c)] confirms the presence of nontrivial long-term cor-
relations and scaling of the fluctuation variance asFsLd
<La. In order to test this behavior in the residuals of the
dilatometric data after further processing, we apply both the

FIG. 7. Power spectra of regression residuals of an example of
stable(a),(b) and of unstable(c),(d) time series of dilatometric mea-
surements. Single(a),(c) and double(b),(d) logarithmic plots.

FIG. 8. Power spectra(a),(b) and results of the detrended fluc-
tuation analysis(c)-(e) for the residuals of the single(c) and triple
(a),(d) regressions of the linearly detrended time series of dilatomet-
ric measurements on an unstable slope; and of the triple regression
of the high-pass filtered unstable dilatometric series(b),(e).
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spectral analysis and DFA to the residuals after triple regres-
sions with lagged temperatures[Fig. 8(a), power spectrum;
Fig. 8(d), DFA] and to the triple regression residuals ob-
tained from the high-pass filtered dilatometric series[Fig.
8(b), power spectrum; Fig. 8(e), DFA]. The triple regression
only removed the rest of the annual peak[located at position
about −4 in the logarithmic frequency scale, cf. Figs. 7(d)
and 8(a)], and the high-pass filtering removed all slow fre-
quencies well over the annual peak[Fig. 8(b)], otherwise the
scaling behavior did not change. Looking at these results, it
is probable that the slow fluctuations(“nonlinear trends”
with periods larger than 1 yr) are not caused by external
forces, but are a part of the same fractal fluctuations as those
on higher frequencies.

Our main interest in this study is a distinction between the
stable and unstable slopes, which has been found on a quali-
tative level. Thus, at this stage we do not need to obtain
estimates of the scaling exponentsa andb. It is appropriate,
however, to check their consistency using their relation[18]

b = 2a − 1. s2d

Estimates of the fluctuation coefficienta range between 0.9
and 1.1, while the spectral decay coefficientb from the
whole spectrum is approximately 1.5 with a large variance
leading to the standard deviation equal to 0.6. More detailed
study can find two different scaling regions in the power
spectra[Figs. 7(d), 8(a), and 8(b)], with scalingb<2 andb
between 1.3 and 1.7 in the high- and low-frequency bands,
respectively. Similarly, the DFA plots yield the scaling coef-
ficients a=0.9 anda=1.1 for the low- and high-frequency
regions, respectively. Although the variance of the spectral
estimates is very high, there seems to be an inconsistency
with respect to relation(2). It can, however, be related to the
finding of Malamud and Turcotte[19] that for time series of
limited length, as in our case, the relation(2) holds only for
−1,b,1. Still we have a possibility of checking the con-
sistency of the scaling exponents using the knowledge that,
for self-affine series, their integration increases the spectral
decay coefficient by 2; and vice versa, derivation shiftsb to
b−2 [19]. Therefore we construct differenced series from
both types of residuals(of the single multivariate regression
and the triple regression with the lagged temperatures) and
plot their power spectra and DFA results in Fig. 9. This op-
eration also made a sharp distinction between the two differ-
ent scaling regions in both the power spectra[Figs. 9(a) and
9(b)] and the DFA results[Figs. 9(c) and 9(d)]. The high-
frequency scaling region starts at periods of approximately
four weeks.[29.5 days; 0.699 in the decadic logarithmic
slog10d scale, which correspondsL=5 samples. The irregu-
larly sampled series representing 6026 days was regularly
resampled into 1024 samples, thus giving the time 5.885
days per sample.] The region ends at the period of 11 weeks
[76.5 days, 13 samples, or 1.114 in the DFA log10 scale in
Figs. 9(c) and 9(d)]. This is consistent with the finding in the
power spectra[Figs. 9(a) and 9(b)] where the scaling
changes at the point −2.549[natural logarithm(loge) scale].
This gives the frequency 0.078 cycle/sample, or a period of
12.79 samples. The low-frequency scaling region spans pe-
riods of about 580 days(ending shortly before 2 in the log10

DFA scale or about −4.6 in the loge frequency scale). The
scaling exponents obtained by the robust linear regression
are b1=−0.57±0.5 andb2=−0.07±0.5,a1=0.28±0.01 and
a2=0.55±0.01, for the low- and high-frequency regions, re-
spectively, for the differenced residuals of the single multi-
variate linear regression[Figs. 9(a) and 9(c)]. The results for
the differenced residuals of the triple regression[Figs. 9(b)
and 9(d)] are b1=−0.8±0.4 and b2=−0.09±0.6, a1
=0.22±0.01 anda2=0.49±0.01. The results from other
dilatometric series from unstable slopes are very similar. The
related scaling exponentsa andb are, within the variance of
their estimates, consistent according to relation(2).

V. DISCUSSION AND CONCLUSION

Complex hierarchical patterns observed in long-term
slope movement monitoring records[3–5] might resemble an
evolution of a nonlinear system with a chaotic attractor. The
necessary condition for the hypothesis of deterministic chaos
is nonlinearity of the system under study. Our thorough
analysis of time series of dilatometric measurements on rock
cracks, representing the slope movements, did not, however,
show any evidence for nonlinearity either in the intrinsic
slope dynamics or in their relations to the dynamics of me-
teorological variables(atmospheric temperature, humidity,
and precipitation). The atmospheric variability and seasonal-
ity has a strong influence on the slope dynamics and is re-
flected in the dilatometric series in a nontrivial, but linear,
way. In particular, at least two delay mechanisms are present,
that is, the temperature annual cycle can be regressed onto

FIG. 9. Power spectra(a),(b) and results of the detrended fluc-
tuation analysis(c),(d) for the differenced residuals of the single
(a),(c) and triple (b),(d) regression of the linearly detrended time
series of dilatometric measurements on an unstable slope. Thin
curves in(a),(b) and points in(c),(d) are the results of the respective
methods; thick solid lines in all figures are fitted robust linear re-
gressions in particular scaling regions.
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the dilatometric series with one zero and two nonzero time
lags. The residuals obtained from the dilatometric series by
removing the meteorological influences are asymmetrically
distributed fat-tailed non-Gaussian fluctuations with short-
range correlations in the case of stable slopes. The distribu-
tions of the residuals obtained from the dilatometric mea-
surements on unstable slopes are, on their “fatter” side,
characterized by an asymptotic power-law distribution with
decay coefficients between 4 and 5, i.e., outside the range of
stable Lévy distributionss0,m,2d [17]. When the fluctua-
tions are of this type, the dynamics is intermittent and high-
order moments diverge. Further, the dynamics of the unstable
slopes possesses persistent long-range correlations of self-
affine processes. Two scaling regions have been identified
consistently by both the spectral analysis and the detrended
fluctuation analysis. On time scales between 4 and 11 weeks
the persistence is characterized by the spectral decay coeffi-
cient b<2 which corresponds to a Brownian motion. Time
scales from 11 weeks to almost two years are described by
the spectral decay coefficientb<1.5, which corresponds to a
fractional Brownian motion.

Fluctuations with hyperbolic intermittency and scaling
spectra are expected to occur due to the action of cascade
processes transferring energy from large to small scales[17].
This finding could support the proposal of Zvelebil[4,5] to
model the dynamics of a rock slope collapse preparation by a

hierarchically structured, complex nonequilibrium system
which might show at least two different types of behavior on
two different scaling ranges. From the practical point of
view, however, the most promising result is the qualitative
difference found between the types of correlation decay in
the dynamics of stable and unstable slopes(Fig. 7). Never-
theless, the preliminary character of this result should not be
neglected and further studies are necessary before any gen-
eralization. It should be established how a particular geom-
etry and geology of a slope determine the slope dynamics
and under which conditions the fractal dynamics can serve as
a precursor of instability. The other interesting question is
whether the observed scaling propagates also onto shorter
time scales. Therefore, it is desirable to analyze higher-
frequency data than those used in this study. In the case of a
positive answer, engineering geology could obtain a power-
ful tool for assessing the stability of rock slopes from a rela-
tively short-term monitoring of the slope dynamics.
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