PHYSICAL REVIEW E 70, 036212(2004)

Fractal rock slope dynamics anticipating a collapse

Milan Palus' Dagmar Novotnd,and Jii Zvelebif
Ynstitute of Computer Science, Academy of Sciences of the Czech Republic, Pod voda&iskou v
182 07 Prague 8, Czech Republic
?Institute of Atmospheric Physics, Academy of Sciences of the Czech Repudiic|lB401, 141 31 Prague 4, Czech Republic
3Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V élesddi,
182 09 Prague 8, Czech Republic
(Received 4 April 2003; revised manuscript received 29 April 2004; published 27 Septembegr 2004

Time series of dilatometric measurements of relative displacements on rock cracks on stable and unstable
sandstone slopes were analyzed. The inherent dynamics of rock slopes lack any significant nonlinearity.
However, the residuals obtained by removing meteorological influences are fat-tailed non-Gaussian fluctua-
tions, with short-range correlations in the case of stable slopes. The fluctuations of unstable slopes exhibit
self-affine dynamics of fractional Brownian motions with power-law long-range correlations and are charac-
terized by asymptotic power-law probability distributions with decay coefficients outside the range of stable
Lévy distributions.
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I. INTRODUCTION any hypothesis of the presence of chaotic dynamics would be

Characteristic features observed in the temporal develoginfounded. The inherent slope dynamics, however, are far
ment of slope movement activity were proposed for evalualfom being trivial noninformative noise. The residuals ob-
tion of rock slope stability in 1968 by Bjerrum and Jorstadttained from the slope movement series by removing meteo-
in order to overcome the shortcomings of static modg]s ~ rological influences are fat-tailed non-Gaussian fluctuations,
Since then this observational method has been successfulyith short-range correlations in the case of stable slopes. The
applied for short-term prediction of rock slope collapses withfluctuations of unstable slopes exhibit self-affine dynamics of
prediction horizons ranging from days to wegkse[2] and  fractional Brownian motions with power-law long-range cor-
references therejnZvelebil and Moser have recently dem- relations and are characterized by an asymptotic power-law
onstrated a successful prediction of a sandstone rock wajirobability distribution with a decay coefficient outside the
collapse two months beforehari@]. Moreover, they also range of stable Lévy distributions.
show examples where the slope dynamics seems to bear pre- The analyzed data are described in Sec. Il. Section IlI
dictive information about a possible collapse one or moredescribes the preprocessing of the data, separation of the
years in advance. This long-term prediction, however, wagtmospheric variability reflected in the slope dynamics, and
based on rather subjective evaluation by experienced expertge nonlinearity tests used for testing the hypothesized non-
of qualitative features observed in long-term monitoring oflinearity in the slope movement dynamics and their relations
slope movements. If such long-term predictive informationto dynamics of meteorological variables. Distribution and
exists in the slope movements records, it would be desirableorrelation properties of the residuals after removal of atmo-
to find an objective, quantitative method for its extractionspheric influences are analyzed in Sec. IV by using standard
and evaluation. Zvelebil observed complex hierarchical patmethods such as estimation of histograms and periodograms,
terns in long-term slope movement records and proposed t@s well as by using the detrended fluctuation analygjs
analyze them using modern methods developed in the theorlhe results are discussed and conclusion given in Sec. V.
of nonlinear dynamics and deterministic ch@ds5]. Qin et
al. recently described landslide evolution using a nonlinear Il DATA
dynamical model exhibiting chaotic behavid@]. Lyapunov
exponents, predictable time scales, and stability criteria were Displacements of rock masses—mainly crack openings—
evaluated using this model, which was estimated from thevere measured by rod dilatometers on kinematically and
observed landslide da{é]. functionally defined key sites of unstable and potentially un-

In this paper, rock slope dynamics, registered as time sestable rock objects and parts of sandstone rock walls with
ries of dilatometric measurement of relative displacementfieights ranging from 40 to 100 m. The sites form a safety
on rock cracks, are analyzed. A series of nonlinearity tests imonitoring net above the main road to the Czech Republic—
performed using raw and preprocessed data registered @&ermany border crossing pointie¢hsko-Schmilka near the
stable and unstable sandstone slopes. Relations betweeity of Décin. The total length of the net is over 12 km, and
slope movements and dynamics of meteorological variablewith more than 400 measuring sites it covers 100 rock ob-
are also tested. Atmospheric variability and seasonality exiects [3-5]. Irregularly registered measurements form time
plain a large portion of slope movement variance. The reseries with sampling times ranging from a few days to ap-
sponse to the atmospheric driving as well as the inheremroximately two weeks. The available time series span the
dynamics of rock slopes lack any significant nonlinearity, sgperiod from January 198%r November 1995to June 2000,
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FIG. 1. Time series of dilatometric measurements of relative  FIG. 2. Linearly detrended time series of dilatometric measure-
displacements on rock cracks on stafae(c) and unstabléd), (e) ments of relative displacements on rock cracks on stédlend
sandstone slopes. unstable(b) sandstone slopes. Time series of atmospheric tempera-

. . t , humidity (d), and ipitati in th ion.
thus producing series of lengths from 480 to 612 samples. Anure (), humidity (c). and precipitation(s) in the region

engineering geology expert divided the available, large col- i )

obtained from S|0pes where no patterns Signa"ng danger of Iae considered in the analyses. Since time series of meteoro-
rapid slope collapse have been identified, despite some of tHegical data[atmospheric temperature, Fig(c? humidity,
monitored slopes exhibiting irreversible, long-lasting move-Fig. 2d), and precipitation, Fig. ()] were not measured
ments. The “unstable series” were recorded on slopes whicsimultaneously on the same sites as the dilatometric data,
recently either collapsed or were blasted down after beinghey were obtained by concatenating records from the two
assessed as approaching a collapse stage. After careful sanearest meteorological stations in the regio¢ib and Usti
ing of the data, the majority of recordings were excluded duaad Labem. Thus we have obtained complete daily data
to incompletenes@arge gaps in recordingsnd the remain- spanning the studied period. For each dilatometric record,
ing four unstable and five stable series were analyzed. Thiéme series of the meteorological data with the same sam-
examples of the raw data are presented in FigilFlhs. pling were constructed and resampled in the same way as the
1(a)-1(c), stable; Figs. ) and Xe), unstable seri@sSince dilatometric data. We realize that the meteorological data,
most time series analysis methods require a regular sanespecially the amounts of precipitation, are characterized by
pling, the series were resampled by a linear interpolatiora high spatial variability, so we should use these data cau-
using a procedure in a time series software pack8perhe tiously.
1024 samples obtained were used in further analyses. In par-
allel, a nonlinearity test for unevenly sampled dg@awas
also applied to the raw data. Ill. TESTING FOR NONLINEARITY

Some of the time serigboth stable, Figs. (t), and un- ) o o o
stable, Fig. {d)] contain a long-term linear trend. Such a The test for nonllnear_lty in unlvar_lat[dO] and_mult|var|-
clear nonstationarity could influence analyses and therefort® data[11] operates with information-theoretic tods2]
the series were linearly detrendgg]. The linearly detrended SUch as the well-known mutual informatideX;Y) of two
time serieg[Figs. 2a) and 2b)] can still contain slow non- random variables< and Y, given asi(X;Y)=H(X)+H(Y)
linear trends. It is not cleaa priori, however, whether such —H(X,Y), where the entropiesl(X), H(Y), andH(X,Y) are
nonlinear trends are a part of the dynamics of interest, ogiven in the usual Shannonian serig]. Now, let the vari-
should also be removed. Therefore two versions of detrende@plesX andY have zero means, unit variances, and correla-
time series were used in subsequent ana|y3i3: |inear|y dédion matrixC. Then, we define a linear version of the mutual
trended, such as the examples in Fig&)Zand 2b); and  information asL(X;Y)=-(1/2)(logoy+loga>), whereo; are
high-pass filtered series in which frequencies over 1.3he eigenvalues of the correlation mat@x
cycle/yr were removed. Spectral as well as time-domain fil- If the variablesX,Y have a two-dimensional Gaussian
ters[8] were tested and similar results were obtained. distribution, then L(X;Y) and I(X;Y) are theoretically

The dynamics of the series are dominated by an annuaquivalent. The general mutual informatibrietects all de-
cycle probably caused by atmospheric influences, mainly bpendences in the data under study, while the line&r sen-
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sitive only to linear structuregsee [10] and references zogl ™ == = ' wesam 3 T e
therein. The test used is based on the so-called surrogate,% [ HINEAR oo NONLINEAR
data[13] approach, in which one computeshanlinear sta- < 1
tistic (herel) from the data under study and from an en- i 0.4}
semble of realizations of a linear stochastic process, which2
mimics the “linear properties” of the studied data. If the %
computed statistic for the original data is significantly differ- <
ent from the values obtained for the surrogate set, one cal5 |
infer that the data were not generated by a linear process. FcZ o
the purpose of such tests the surrogate data must preserve tka)
spectrum and consequently, the autocorrelation function of i
the series under studyt3]. (Also, preservation of the histo- 6F ]

gram is usually required. A histogram transformation used

0.2F

H

for this purpose is described [10] and references therejn. g

In the multivariate case cross correlations between all pairs®, |

of variables must also be presenjdd]. b 2r
As in [10] we define the test statistic as the difference & 0:

between the mutual informatioh(X;Y) obtained for the
original data and the medi(X;Y) of a set of surrogates, in N B ]
the number of standard deviatioSD’s) of the latter. The -50 0 50 -50 0 50
result is considered significant if the difference is clearly © LAG [sample] () LAG [sample]
larger than two SD’s. In this study we applied the univariate
yer5|an(X(_t);?((t+T)) When dy_namlcal propert!es and non- mospheric temperature and the detrended unstable dilatometric time
linearity of individual seriegvariableg were studied, and the  garjes ysing mutual informatioh(X(t): Y(t+7) (b), (d) and the
bivariate versionl(X(t); Y(t+7)) when dynamical relations check of the surrogate data using linear mutual information
between two variables were investigated. The mutual infort (x(t); Y(t+7) (a), (c). The values of mutual informatioga,b
mation I1(X;Y)[o] from the scrutinized data and the mean from the tested datésolid line), mean(dash-dotted ling and mean
mutual informationl (X;Y)[s] from the surrogates, as well as +SD (dashed linesof a set of 30 realizations of the surrogate data.
the test statistics, defined above, were plotted as functions dhe statistics, differences in number of standard deviations of the
the lag 7. Significant differences found betweé(X;Y)[o]  surrogategc), (d).

andI(X;Y)[s] were used to infer nonlinearity in the dynam-
ics of a variable(in the univariate cageor in a relation

FIG. 3. Testing for nonlinearity in the relationship between at-

references therejn One can use more sophisticatéahd

b ablesn the bivari Th computationally costly methods for construction of better
etween two variablesn the bivariate cageThe same tests g, 5gate datdls], or try to remove the cyclic component

as those using thénonlineay mutual informationl(X;Y)  from the studied data. Since an atmospheric source of this
were done with its linear versioh(X;Y). Since the latter annual cyclicity in the studied data can be expected, in the
measures only linear relations in the data, any significancg|lowing we fit a multivariate linear regressid8] using the
obtained using.(X;Y) indicates imperfect surrogate data. In meteorological data as independent variables and the dilato-
such cases the significant results obtained udi¥)Y)  metric series as the dependent variable. The maxima of mu-
should be assessed carefully, since they can reflect just a flagval information between the atmospheric variables and the
in the surrogates, and the tested data could be linear. dilatometric series are located at zero lag, so series without
A typical result of the above described testing approachagging are used in this first series of regressions. The regres-
can be seen in Fig. 3, where the relation between the atmasion residuals are used in further analyses. The results of
spheric temperature and the detrended unstable dilatometri@nlinearity tests of the residuals are similar to those in Fig.
time series is studied. The mutual informatiofX(t);Y(t 3, but the dependence is weaker, i.e., the annual cycle was
+7)) detects a strong periodically changing dependenceemoved only partially. The relation between the residuals
which seems to be stronger in the data than it is in the lineaand the atmospheric temperature can be seen in Fig. 4. Prac-
surrogategFig. 3b)]. This deviation is reflected in statisti- tically, all the above conclusions hold, only the maximum of
cally significant differences reaching over four SDBig.  I(X(t);Y(t+7)) is now in the lag 17 samples. Therefore an-
3(d)]. A conclusion that the data are nonlinear is preventedther linear regression, now with a lagged temperature series,
by the results from the linear statistic based on the lineawas performed twice—first with the lag 17 samples and then
redundancyt(X(t); Y(t+7)). It also discovers significant dif- with the lag 21 samples. Residuals of all dilatometric series
ferences between the data and the surrogates, i.e., the surregressed on meteorological variables were twice more re-
gates do not exactly preserve the linear properties of the datgressed on lagged temperature series with lags determined
Similar results have also been obtained in tests for nonfrom such analyses as presented in Fig. 4. These triple re-
linearity in relations between the other meteorological vari-gressions finally removed the annual cycle, and in a majority
ables and the dilatometric data and in testing the dilatometriof the stable dilatometric series also any formal nonlinearity
data themselves. (significance in the nonlinearity te$t§ he results of nonlin-
The fact that surrogates of strongly cyclic data can beearity analysis of the residuals from the triple regression for
flawed has been observed and descrifse, e.g.[10] and  one of the unstable dilatometric series are presented in Fig.
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-50 0 50 -50 0 50 stable(a) and unstablgb) time series of dilatometric measurements.
(© LAG [sample] (d) LAG [sample] Diamonds and squares illustrate left and right sides of the distribu-
) ) o . . tion. The solid line shows the average distribution of t€aliza-
FIG. 4. Testing for nonlinearity in the relationship between at-tjong of 4 1024-sample time series randomly drawn from the Gauss-

mospheric temperature and the residuals of the multilinear regresa, gistribution with the same mean and variance as the residuals
sion of the detrended unstable dilatometric time series on the M&inder study.

teorological variables, using mutual informatidX(t);Y(t+ 7))

(b),(d) and the check of the surrogate data using linear mutual in- L .
formationL(X(t); Y(t+7) (a),(c). See caption of Fig. 3 for the line ©€NCES from the surrogate data. It is time to consider a more

key. sophisticated construction of surrogate data than just the
simple phase randomization and fast Fourier transform as
ueflbove. In order to avoid possible problems due to resampling
we returned to the raw data and applied the method of
Schreiber and Schmit@]. In this approach, surrogate data
of unevenly sampled series are constructed using the Lomb
periodogram and a combinatorial optimization for its inver-
sion. No significant results, i.e., no evidence for nonlinearity,
AL B LA IR BN 01 11— . .
NONLINEAR were found in the studied data.

Summing up the above results, we can see that the dy-
namics of the dilatometric measurements of relative dis-
placements on rock cracks is strongly modulated by the me-
teorological variables. Their influence, namely, that of the
atmospheric temperature, is reflected in a complex but linear
way. The inherent dynamics of the rock slopes, reflected in
the residuals of the triple regressions is probably linear, but,
especially in the cases of unstable slopes, cannot be ex-
plained by a(transformedgl linear Gaussian process, used as
the null hypothesis in the above nonlinearity tests. In the next
section we will analyze properties of these residuals.

5. The annual cycle is removed and there is a weak b
long-term dependence apparent between the pr¢3&nf

and the futurd X(t+7)] values of the studied series. Again,
both linear and nonlinear statistics show significant differ-

LINEAR

MUTUAL INFORMATION

—
Q

=
(=)
N
SE-
~
EF
(2]
2R
o]
o
N
(o]
o

DIFF [SD's]
n

IV. DISTRIBUTIONS AND TEMPORAL CORRELATIONS

o

In order to study distributions of the residudtsbtained
by the above-described multiple linear regressioms first
0 20 40 60 80 100 0 20 40 €0 80 100 iy the data into 64 bins and construct their histograms.
() LAG [sample] (d) LAG [sample] . . ;
Then, by summing the bins from the tail to the mean value,
FIG. 5. Testing for nonlinearity in the residuals of the triple we O_bta'n the empirical pr_obablllt?(|x|>X) Of. observmg
linear regression of the detrended unstable dilatometric time serie@Mplitudes larger than a given valde(wherex is a devia-
on the meteorological variables, using mutual informationtion from the mean valyeThe examples oP(|x| > X) for a
[(X(t); X(t+7) (b),(d) and the check of the surrogate data usingStable and unstable dilatometric series are presented in Figs.
linear mutual informationL(X(t); X(t+7)) (a),(c). See caption of 6(a) and &b), respectively. The distributions are asymmetric,
Fig. 3 for the line key. with a small digression from the Gaussian distribution in the

w1s ]
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FIG. 7. Power spectra of regression residuals of an example of FIG. 8. Power spectréa),(b) and results of the detrended fluc-
stable(a),(b) and of unstabléc),(d) time series of dilatometric mea- tyation analysigc)-(e) for the residuals of the singke) and triple
surements. Singlég),(c) and doublgb),(d) logarithmic plots. (a),(d) regressions of the linearly detrended time series of dilatomet-

stable caséFia. 6a). For the unstable seriéBia. &b)] one ric mea;urementg on an unstable ;Iope; anq of the triple regression
tail is mucﬁ:“fgttgr”)]than the Gaussian distﬁbu%ioe(n, )i?e., IargeOf the high-pass filtered unstable dilatometric se(iBse).
fluctuations are more likely to occur than the Gaussian dis-
tribution would predict. Moreover, this tail is consistent with ~ Briefly, for performing the DFA, the time serieix(i),
a power lawP(|x|>X) = X* showing the increasing reduc- i=1,... N} is centered by subtracting its mean valuand
tion of probability for increasing amplitude of the fluctua- integrated. The integrated time seriﬁ(e’s():Erzl[x(i)—ﬂ is
tions. The robust linear regressifhg] fit yields an estimate divided into boxes of equal length In each box of length,
n=4.8, which is well outside the range for stable Lévy dis-a least squares line is fitted to the da&presenting the trend
tributions (0< . <2) [17]. in that box. They coordinate of the straight line segments is
In order to study the dynamics and temporal correlationsjenoted byy, (k). Next, we detrend the integrated time series
of the residuals we calculate their power sped8a The y(K) by subtracting the local treng, (k) in each box. The

examples for stablgFigs. 1a) and (b)] and unstabléFigs. o4t mean-square fluctuation of this integrated and detrended
7(c) and 7d)] dilatometric data are plotted in singloga-  time series is calculated using

rithm of power against frequency, Figs(ay and 7c)] and

double[logarithm of power against logarithm of frequency, N
Figs. 1b) and 7d)] logarithmic plots. The power spectrum F(L) = \/12 [y(K) -y (K2 (1)
of the stable seriefigs. 1a) and {b)] decays in a linear N1

fashion in the case of the single logarithmic pibtg. 7(a)],
i.e., the spectral powes(f) as a function of the frequendy  This computation is repeated over all time scalasx sizes
is best described by an exponentially decreasing c&¥e L) to characterize the average fluctuatifl) as a function
~exp(—vf). Such a power spectrum is typical for series with of box sizeL. Typically, F(L) will increase with box sizé.
short-range correlations, i.e., the correlation function expoA linear relationship on a double logarithmic plot indicates
nentially decreases with increasing time lag. The behavior ofhe presence of power-lagfractal) scaling. Under such con-
the spectrum of the unstable series is different—now an apditions, the fluctuations can be characterized by a scaling
proximately linear decrease can be seen in the double log@xponenty, the slope of the line relating leg=(L) to log, L.
rithmic plot [Fig. 7(d)]. This spectrum is best approximated = The DFA results obtained for the residuals of the linearly
by a power-law decas(f)~f~2. The robust linear regres- detrended unstable dilatometric series, obtained from the
sion fit over the whole spectrum yields an estimge single multivariate linear regression on the meteorological
=1.5+0.6. Such a power spectrum is a characteristic of fracvariables, are presented in Figcg [The related power spec-
tal Brownian motion with long-term power-law correlations. trum was illustrated in Fig. (d)]. The long range of the

In addition to scaling of the distribution of fluctuations linearly increasing dependence in the double logarithmic plot
and of the distribution of energy over the power spectrum][Fig. 8c)] confirms the presence of nontrivial long-term cor-
we also study a possible scaling of fluctuations in their tem+elations and scaling of the fluctuation variance F(%)
poral evolution using so-called detrended fluctuation analysis=L“. In order to test this behavior in the residuals of the
(DFA) [7]. dilatometric data after further processing, we apply both the
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spectral analysis and DFA to the residuals after triple regres-
sions with lagged temperaturgBig. 8a), power spectrum;
Fig. 8d), DFA] and to the triple regression residuals ob-
tained from the high-pass filtered dilatometric serj€g.
8(b), power spectrum; Fig.(8), DFA]. The triple regression
only removed the rest of the annual pgadcated at position
about -4 in the logarithmic frequency scale, cf. Figed)7
and &a)], and the high-pass filtering removed all slow fre-
guencies well over the annual pefdkg. &b)], otherwise the
scaling behavior did not change. Looking at these results, it
is probable that the slow fluctuatior(énonlinear trends”
with periods larger than 1 yrare not caused by external
forces, but are a part of the same fractal fluctuations as thosi
on higher frequencies. )
Our main interest in this study is a distinction between the
stable and unstable slopes, which has been found on a qual$ 08L
tative level. Thus, at this stage we do not need to obtain
estimates of the scaling exponeat&nd 8. It is appropriate,
however, to check their consistency using their relafits]

Log, Power

S5 4 3 2 A 5 -4 3 2 A
Log, Frequency

0.4

0.6 |

g
o

-1 1 1 1 - 1 1 1
1 1.5 2 1 1.5 2

B=2a-1. 2) Log,,L Log,, L

Estimates of the fluctuation coefficieatrange between 0.9 FIG. 9. Power spectrén),(b) and results of the detrended fluc-
and 1.1, while the spectral decay coefficightfrom the tuation analysigc),(d) for the differenced residuals of the single
whole spectrum is approximately 1.5 with a large variance@),(c) and triple (b),(d) regression of the linearly detrended time
leading to the standard deviation equal to 0.6. More detailegeries of dilatometric measurements on an unstable slope. Thin
study can find two different scaling regions in the powercurves in(@),(b) and points in(c),(d) are the results of the respective
spectra[Figs. 7d), 8@), and 8b)], with scaling8~2 andp methqu; t.hick splid lines iln all figures are fitted robust linear re-
between 1.3 and 1.7 in the high- and low-frequency bandsJressions in particular scaling regions.

respectively. Similarly, the DFA plots yield the scaling coef-

ficients =0.9 anda=1.1 for the low- and high-frequency DFA scale or about —4.6 in the lpdrequency scale The
regions, respectively. Although the variance of the spectra$caling exponents obtained by the robust linear regression
estimates is very high, there seems to be an inconsisten@re 8,=-0.57+0.5 and8,=-0.07+0.5,2,=0.28+0.01 and
with respect to relatioii2). It can, however, be related to the «,=0.55+0.01, for the low- and high-frequency regions, re-
finding of Malamud and Turcottgl9] that for time series of  spectively, for the differenced residuals of the single multi-
limited length, as in our case, the relati®) holds only for  variate linear regressidrigs. 9a) and 9c)]. The results for
-1<B<1. Still we have a possibility of checking the con- the differenced residuals of the triple regressfbigs. 9b)
sistency of the scaling exponents using the knowledge thagnd 9d)] are B;,=-0.8+0.4 and 8,=-0.09%0.6, o

for self-affine series, their integration increases the spectra0.22+0.01 anda,=0.49+0.01. The results from other
decay coefficient by 2; and vice versa, derivation shft®  dilatometric series from unstable slopes are very similar. The
B—-2 [19]. Therefore we construct differenced series fromrelated scaling exponentsand S are, within the variance of
both types of residual&®f the single multivariate regression their estimates, consistent according to relatian

and the triple regression with the lagged temperajuaesl
plot their power spectra and DFA results in Fig. 9. This op-
eration also made a sharp distinction between the two differ-
ent scaling regions in both the power spedffays. 9a) and Complex hierarchical patterns observed in long-term
9(b)] and the DFA result§Figs. 9¢) and qd)]. The high-  slope movement monitoring recorf-5] might resemble an
frequency scaling region starts at periods of approximatelyevolution of a nonlinear system with a chaotic attractor. The
four weeks.[29.5 days; 0.699 in the decadic logarithmic necessary condition for the hypothesis of deterministic chaos
(logyp) scale, which corresponds=5 samples. The irregu- is nonlinearity of the system under study. Our thorough
larly sampled series representing 6026 days was regularlgnalysis of time series of dilatometric measurements on rock
resampled into 1024 samples, thus giving the time 5.88%racks, representing the slope movements, did not, however,
days per samplgThe region ends at the period of 11 weeksshow any evidence for nonlinearity either in the intrinsic
[76.5 days, 13 samples, or 1.114 in the DFA,lpgcale in  slope dynamics or in their relations to the dynamics of me-
Figs. 9¢) and 9d)]. This is consistent with the finding in the teorological variablegatmospheric temperature, humidity,
power spectra[Figs. 9a) and 9b)] where the scaling and precipitation The atmospheric variability and seasonal-
changes at the point —2.548atural logarithm(loge) scald. ity has a strong influence on the slope dynamics and is re-
This gives the frequency 0.078 cycle/sample, or a period oflected in the dilatometric series in a nontrivial, but linear,
12.79 samples. The low-frequency scaling region spans pavay. In particular, at least two delay mechanisms are present,
riods of about 580 daygending shortly before 2 in the lgg  that is, the temperature annual cycle can be regressed onto

V. DISCUSSION AND CONCLUSION
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the dilatometric series with one zero and two nonzero timéhierarchically structured, complex nonequilibrium system
lags. The residuals obtained from the dilatometric series byhich might show at least two different types of behavior on
removing the meteorological influences are asymmetricallgwo different scaling ranges. From the practical point of
distributed fat-tailed non-Gaussian fluctuations with shortview, however, the most promising result is the qualitative
range correlatlons in the case of stable slopes. The_dlstrlbtuifference found between the types of correlation decay in
tions of the residuals obtained from the dilatometric meathe dynamics of stable and unstable slofféis. 7). Never-
surements on unstable slopes are, on their “fatter” sidepeless, the preliminary character of this result should not be
characterized by an asymptotic power-law distribution W'thneglected and further studies are necessary before any gen-

decbaly cqeffigi_ent% between 4 and 5, i.e., ﬁUtSidhe t]tl‘e range @flization. It should be established how a particular geom-
stable Levy IStrl Ut'0n$0<'“<2.) [1.7]'.W en the fluctua- etry and geology of a slope determine the slope dynamics
tions are of this type, the dynamics is intermittent and high-,

p . nd under which conditions the fractal dynamics can serve as
order moments diverge. Further, the dynamics of the unstabla y

. . precursor of instability. The other interesting question is
slo_pes possesses persistent Iong-_range correlat|or!s of_s_ hether the observed scaling propagates also onto shorter
affme_ processes. Two scaling regions have heen identifie e scales. Therefore, it is desirable to analyze higher-
consstgntly by b(.)th the ;pectral analysis and the detrend guency data than those used in this study. In the case of a
fluctuation analysis. On time scales between 4 and 11 wee

X . . ositive answer, engineering geology could obtain a power-
the persistence is characterized by the spectral decay coe (il tool for assessing the stability of rock slopes from a rela-
cient 8~=2 which corresponds to a Brownian motion. Time

. tively short-term monitoring of the slope dynamics.
scales from 11 weeks to almost two years are described by y 9 pe dy

the spectral decay coefficieft= 1.5, which corresponds to a
fractional Brownian motion.

Fluctuations with hyperbolic intermittency and scaling
spectra are expected to occur due to the action of cascade The authors would like to thank Professor P. V. E. Mc-
processes transferring energy from large to small s¢alds  Clintock for careful reading of the manuscript. The study
This finding could support the proposal of Zvelepll5] to  was supported by the Grant Agency of the Czech Republic
model the dynamics of a rock slope collapse preparation by éProject No. 205/00/1055
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